Spherical CR Dehn surgeries

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spherical CR Geometry and Dehn Surgery,

There are several ways to generalise the hyperbolic plane and its isometry group to objects in higher dimensions. Perhaps the most familiar is (real) hyperbolic three space, popularised by the work of Thurston [14]. The Poincaré disc and half plane models of the hyperbolic plane naturally come with a complex structure and it is natural to generalise them to complex hyperbolic space in higher co...

متن کامل

Spherical CR geometry and Dehn surgery , by Richard

The ideas in this book revolve around a central theorem, the horotube surgery theorem, which is mainly of interest to specialists in complex hyperbolic geometry; see Section 6 below. This book is the culmination of several important papers by Schwartz in this area, which we describe in Section 4 below. As well as the main theorem, this book contains background material and applications. It may ...

متن کامل

Non-integral Toroidal Dehn Surgeries

If we perform a non-trivial Dehn surgery on a hyperbolic knot in the 3-sphere, the result is usually a hyperbolic 3-manifold. However, there are exceptions: there are hyperbolic knots with surgeries that give lens spaces [1], small Seifert fiber spaces [2], [5], [7], [20], and toroidal manifolds, that is, manifolds containing (embedded) incompressible tori [6], [7]. In particular, Eudave-Muñoz ...

متن کامل

Dehn surgeries that yield fibred 3 - manifolds

We study Dehn surgeries on null-homotopic knots that yield fibred 3-manifolds when an additional (but natural) homological restriction is imposed. The major tool used is Gabai’s theory of sutured manifold decomposition. Such surgeries are negative examples to a question of Michel Boileau. Another result we will prove is about surgeries which reduce the Thurston norm of a fibred manifold.

متن کامل

Dehn surgeries on knots in product manifolds

We show that if a surgery on a knot in a product sutured manifold yields the same product sutured manifold, then this knot is a 0or 1-crossing knot. The proof uses techniques from sutured manifold theory.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pacific Journal of Mathematics

سال: 2016

ISSN: 0030-8730,0030-8730

DOI: 10.2140/pjm.2016.284.257